桥梁JPZ盆式固定橡胶支座常用规格,一个实用的减隔震设计

JPZ固定型盆式橡胶支座中心增设剪力卡榫与上支座板连接,采用剪力卡榫承受水平剪力,具有以下特点:

下面是本网给大家带来关于减隔震设计的相关内容,以供参考。

减少支座锚固螺栓承受的剪切力,支座整体受力更加合理;

在对桥梁减隔震原理进行分析的基础上,依据连续梁桥在地震作用时受力的特点,对连续梁桥的固定支座进行了减隔震设计,将原来的固定支座改为相对固定。对该桥在地震荷载作用下的抗震性能分析表明,采取V隔震措施后,固定墩的受力情况得到明显改善,主梁的纵向位移以及梁、墩的相对位移虽有所增大,但即使在8度的地震荷载作用下,位移幅度仍在支座允许的位移范围内。

减少了锚固组件尺寸,降低了支座重量。

连续梁桥具有结构刚度大、变形小的特点,在我国有着广泛的应用。对连续梁桥的空间地震反应分析表明,由于连续梁桥一般只设置一个固定墩,在地震荷载作用下,纵桥向的地震荷载的绝大部分均由设置在固定墩上的固定支座来承受,因此,固定墩处于十分不利的受力状态。如果一味要求固定墩满足强度要求、在弹性范围内工作,不仅是不经济的,而且也没有必要。本文探讨了一种新颖的作法,即利用减隔震的基本原理,在不改变原桥梁主体结构的情况下,仅对固定支座进行适当的减隔震设计,以满足”小震不坏、中震可修、大震不倒”的设计要求。

JPZ盆式橡胶支座滑动材料采用UHMWPE改性超高分子量聚乙烯,其具有高耐磨、低摩擦、高面压的特点,UHMWPE改性超高分子量聚乙烯的采用提高了支座的设计面压,降低了支座的重量,且高耐磨的特性延长了支座使用寿命;轻量化结构设计对支座的安装、维修更换带来了极大的便利。

一、减隔震原理

JPZ盆式橡胶支座采用高强度热轧钢或锻件,提升了支座整体受力性能和质量可靠性,同时降低了支座重量。

延长结构的自振周期可以有效地减小结构的地震加速度反应,从而减小结构由于地震所遭受到的地震荷载。对于桥梁结构,采用橡胶支座、聚四氟乙烯支座以及其他滑动支座即瓦达到增加结构柔性、延长结构自振周期的目的。但是,随着结构自振周期的延长,梁体与墩台之间的相对位移也同时增加。为了减小由于结构自振周期延长而增加的梁墩相对位移,可以采用增加结构阻尼的方法。加大结构的阻尼,地震引起的位移反应能得到明显的抑制[1]。

JPZ盆式橡胶支座工作原理:

综上所述,减隔震的基本原理为:

JPZ盆式橡胶支座利用被封闭在钢制盆腔里的橡胶块在三项受力状态下具有流体的体积不可压缩性的特点,将桥梁上部结构的荷载可靠的传递到墩台上,并实现桥梁梁端的转动;同时依靠聚四氟乙烯板与不锈钢板之间的自由滑移,来适应桥梁上部结构由于气温变化、混凝土徐变收缩等因素引起的水平位移,从而保证桥梁的使用安全。

采用柔性支承,以延长结构的自振周期,从而减小结构由于地震引起的内力反应;

JPZ盆式橡胶支座位移:

(2采用阻尼器或耗能装置,以控制由于周期延长而导致的过大的相对位移;

梁体的竖向位移是依靠支座内橡胶板的不均匀压缩来实现的,本文不进行阐述,仅阐述平面位移体系。在一联连续梁中,为保证合理位移,必将涉及到前述述三种结构形式支座。

具有足够的刚度和强度,以支承正常使用极限状态下的水平力(如风荷载、汽车制动力等)。

二、工程背景

本文以某五跨连续梁桥为工程背景,该桥跨径组合为49.90+3X80.00+49.90。桥址的土质(在地表以下20.0m范围内)为淤泥、淤泥质亚粘土、粘土和细砂,地基容许承载力[σ0]<130kPa。根据《公路工程抗震设计规范》(JTJ004-89)第4.2.2条规定,确定该桥场地类别为Ⅳ类场地上。

该连续梁桥的上部结构为两个分离的单箱单室变截面箱梁,主域处梁高4.5m,边墩及跨中的梁高均为2.0m;主墩为变截面空心柱体,边域为排架式撤柱,纵桥向两排,每排3个实心嫩柱、主梁和桥墩之间采用盆式橡胶支座连接。

1.分析模型

该桥的抗震计算采用同济大学土木工程防灾国家重点实验室桥梁抗震学科组编制的程序NSRAP进行。

考虑到桥墩基础为钻孔灌注桩,墩底位移相对较小,将桥墩固结在墩底会增大结构内力反应,故而适当放大结构周期,将墩延长约3倍桩径固结。桥墩依线弹性梁单元来处理。计算中对活动支座考虑其非线性效应,用非线性支座单元处理。采用Ⅳ类场地人工波作为输入地震波,依Eurocode8对地震波进行三个方向组合,以纵桥向为验算主方向。设计基本烈度为7度。

2.验算结果

对结构进行非线性时程反应分析。计算结果均以一幅计。

3.结果分析

设计单位设计的盆式支座布置情况为(以一幅计):两边墩分别设置两个TPZ3000-ZX型盆式橡胶支座,固定墩设置两个TPZ15000-GDZ型盆式橡胶支座,余主墩上皆各设两个TPZ15000-ZX型盆式橡胶支座。

TPZ15000一GDZ型盆式橡胶支座为抗震型支座,其竖向承载力为15000kN,可承受的最大水平力为15000X20%=3000kN,故固定墩墩顶所能承受的最大水平力为6000kN。

6度地震荷载作用下,固定墩墩顶所承受的水平力为6455kN,大于其上固定支座所能承受的最大水平力,固定支座被剪坏。

对固定墩的钢筋混凝土截面进行弯短一曲率关系分析,得到其纵向反应及屈服弯矩。

7度和8度地震荷载作用下,截面的能力/需求比大于1,表明固定墩墩底截面发生塑性变形,即,在承受一定的轴力作用时,截面所承受的弯矩超过截面屈服弯矩,进入了非线性工作阶段。

由验算可知,该桥在6度地震荷载作用下,固定支座已被剪坏,不能满足桥现关于”小震不坏”的设计要求。而且,固定墩在7度地震荷载作用下的”截面能力/需求比”高达180.4%,这说明设计基本烈度地震荷载作用下,固定墩的强度已不能满足。因此,”中震可修”的要求也难以保证。

通常遇到这种情况,常采用以下解决方法:

发表评论

电子邮件地址不会被公开。 必填项已用*标注